
Linear-Time Construction of Suffix Arrays
(Extended Abstract)

Dong Kyue Kim1�, Jeong Seop Sim2, Heejin Park3, and Kunsoo Park3��

1 School of Electrical and Computer Engineering, Pusan National University
dkkim1@pusan.ac.kr

2 Electronics and Telecommunications Research Institute, Daejeon 305-350, Korea
simjs@etri.re.kr

3 School of Computer Science and Engineering, Seoul National University
{hjpark,kpark}@theory.snu.ac.kr

Abstract. The time complexity of suffix tree construction has been
shown to be equivalent to that of sorting: O(n) for a constant-size alpha-
bet or an integer alphabet and O(n log n) for a general alphabet. How-
ever, previous algorithms for constructing suffix arrays have the time
complexity of O(n log n) even for a constant-size alphabet.

In this paper we present a linear-time algorithm to construct suffix
arrays for integer alphabets, which do not use suffix trees as intermediate
data structures during its construction. Since the case of a constant-size
alphabet can be subsumed in that of an integer alphabet, our result
implies that the time complexity of directly constructing suffix arrays
matches that of constructing suffix trees.

1 Introduction

The suffix tree due to McCreight [19] is a compacted trie of all the suffixes of a
string T . It was designed as a simplified version of Weiner’s position tree [26].
The suffix array due to Manber and Myers [18] and independently due to Gonnet
et al. [11] is basically a sorted list of all the suffixes of a string T . There are also
some other index data structures such as suffix automata [3].

When we consider the complexity of index data structures, there are three
types of alphabets from which string T of length n is drawn: (i) a constant-size
alphabet, (ii) an integer alphabet where symbols are integers in the range [0, nc]
for a constant c, and (iii) a general alphabet in which the only operations on
string T are symbol comparisons.

The time complexity of suffix tree construction has been shown to be equiv-
alent to that of sorting [7]. For a general alphabet, suffix tree construction has
time bound of Θ(n log n). And suffix trees can be constructed in linear time for a
constant-size alphabet due to McCreight [19] and Ukkonen [24] or for an integer
alphabet due to Farach-Colton, Ferragina, and Muthukrishnan [6,7].
� Supported by KOSEF grant R01-2002-000-00589-0.

�� Supported by BK21 Project and IMT2000 Project AB02.

R. Baeza-Yates et al. (Eds.): CPM 2003, LNCS 2676, pp. 186–199, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø©M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Linear-Time Construction of Suffix Arrays 187

Despite simplicity of suffix arrays among index data structures, the con-
struction time of suffix arrays has been larger than that of suffix trees. Two
known algorithms for constructing suffix arrays by Manber and Myers [18] and
Gusfield [12] have the time complexity of O(n log n) even for a constant-size al-
phabet. Of course, suffix arrays can be constructed by way of suffix trees in linear
time, but it has been an open problem whether suffix arrays can be constructed
in o(n log n) time without using suffix trees.

In this paper we solve the open problem in the affirmative and present a
linear-time algorithm to construct suffix arrays for integer alphabets. Since the
case of a constant-size alphabet can be subsumed in that of an integer alphabet,
we will consider only the case of an integer alphabet in describing our result.

We take the recent divide-and-conquer approach for our algorithm [6,7,8,15,
22], i.e., (i) construct recursively a suffix array SAo for the set of odd positions,
(ii) construct a suffix array SAe for the set of even positions from SAo, and
(iii) merge SAo and SAe into the final suffix array SAT . The hardest part of
this approach is the merging step and our main contribution is a new merging
algorithm.

Our new merging algorithm is quite different from Farach-Colton et al.’s [6,
7] that is designed for suffix trees. Whereas Farach-Colton et al.’s uses a cou-
pled depth-first search in the merging, ours uses equivalence relations defined
on factors of T [5,12] (and thus it is more like a breadth-first search). Also,
Farach-Colton et al.’s algorithm goes back and forth between suffix trees and
suffix arrays during its construction, while ours uses only suffix arrays during its
construction.

Recently, Kärkkäinen and Sanders [16] and Ko and Aluru [17] also pro-
posed simple linear-time construction algorithms for suffix arrays. Burkhardt
and Kärkkäinen [4] gave another construction algorithm that takes O(n log n)
time using only O(n/

√
log n) extra space.

Space reduction of a suffix array is an important issue [20,9,13,21] because
the amount of text data is continually increasing. Grossi and Vitter [13] proposed
the compressed suffix array of O(n log |Σ|)-bits size and Sadakane [21] improved
it by adding the lcp information. Since their compressions also exploit the divide-
and-conquer approach mentioned above, we can directly build the compressed
suffix array from a given string in linear time by applying our proposed algorithm
to their compressions.

2 Preliminaries

2.1 Definitions and Notations

We first give some definitions and notations that will be used in our algorithms.
Consider a string T of length n over an alphabet Σ. Let T [i] denote the ith
symbol of string T and T [i, j] the substring starting at position i and ending at
position j in T . We assume that T [n] is a special symbol # which is lexicograph-
ically smaller than any other symbol in Σ. Si, 1 ≤ i ≤ n, denotes the suffix of

188 D.K. Kim et al.

T that starts at position i. The prefix of length k of a string α is denoted by
prefk(α). We denote by lcp(α, β) the longest common prefix of two strings α
and β and by lcpi(α, β) the longest common prefix of prefi(α) and prefi(β).
When string α is lexicographically smaller than string β, we denote it by α ≺ β.

We define the suffix array SAT = (AT , LT) of string T as a pair of arrays
AT and LT [7].

• The sort array AT is the lexicographically ordered list of all suffixes of T .
That is, AT [i] = j if Sj is lexicographically the ith suffix among all suffixes
S1, S2, . . . , Sn of T . The number i will be called the index of suffix Sj , denoted
by index(j) = i.
• The lcp array LT stores the length of the longest common prefix of adjacent

suffixes in AT , i.e., LT [i] = |lcp(SAT [i], SAT [i+1])| for 1 ≤ i < n. We set
LT [0] = LT [n] = −1.

We define odd and even arrays of a string T . The odd array SAo = (Ao, Lo)
is the suffix array of all suffixes beginning at odd positions in T . That is, the sort
array Ao of SAo is the lexicographically ordered list of all suffixes beginning at
odd positions of T , and the lcp array Lo has the length of the longest common
prefix of adjacent odd suffixes in AT . Similarly, the even array SAe = (Ae, Le)
is the suffix array of all suffixes beginning at even positions in T .

For a subarray A[x, y] of sort array A, we define PA(x, y) as the longest
common prefix of the suffixes SA[x], SA[x+1], . . ., SA[y]. If x = y, PA(x, x) is
defined as the suffix SA[x] itself. Lemma 1 gives some properties of PA in a
subarray of sort array A.

Lemma 1. Let A[x, y] be a subarray of sort array A for x < y and L be a
corresponding lcp array.

(a) PA(x, y) = lcp(SA[x], SA[y]).
(b) | PA(x, y) | is equal to the minimum value in L[x, y − 1].

In order to find |PA(x, y)| efficiently, we define the following problem.

Definition 1. Given an array A of size n whose elements are integers in the
range [0, n− 1] and two indices a and b (1 ≤ a < b ≤ n) in array A, the range-
minimum query MIN(A, a, b) is to find the smallest index a ≤ j ≤ b such that
A[j] = min a≤i≤b A[i].

This MIN query can be answered in constant time after linear-time pre-
processing of array A. The first solution [10] for the range minima problem
constructed the cartesian tree [25] of array A and answered nearest common an-
cestor computations [14,23] on the tree. In the Appendix, we described another
solution for the problem, which is a modification of Berkman and Vishkin’s sim-
ple solution. We remark that this method uses only arrays without making any
kinds of trees. Similar results were given by Bender and Farach-Colton [1] and
Sadakane [21]. By a MIN query, we get the following theorem.

Linear-Time Construction of Suffix Arrays 189

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 2018 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 2018 19

2E
3E
4E

E1

5E
6E

aaaaaa aaa# b bb b bb b bbb

bbbaaa aaa # aa b bb b bbb

bbbbba baa aa # aa b bbb

bbbbbb bba ba aa # baa

ba
ba

ba aa

a ba a a a b b a b b bb b b a a b a #

index

sort array

lcp array

The suffix array

Equivalence Classes

17181920

A[5,7]

bab #b

ba#bbb bb

0 1 2

126 5

353 0

1 9 152 1116

3 6 2 5 5 1 4 4 0

8 14

3 1

137

4 2

10 3 4

string

Fig. 1. Equivalence classes and subarrays of a sort array.

Theorem 1. Given a suffix array (A, L) and x < y, |PA(x, y)| (i.e., the smallest
index x ≤ j < y such that LT [j] = min x≤i<y LT [i]) can be computed in constant
time.

An advantage of suffix trees is that suffix links are defined on suffix trees.
When lcp(Si, Sj) = aα for a ∈ Σ and α ∈ Σ∗, lcp(Si+1, Sj+1) = α. Suffix links
enable us to find α from Si and Sj . In suffix arrays this can be done by finding
lcp(Si+1, Sj+1) using a MIN query. This method will be used in Section 3.4 with
the following lemma.

Lemma 2. Let i and j (i < j) be two positions in string T . If T [i] and T [j]
match, | lcp(Si, Sj) | = | lcp(Si+1, Sj+1) |+ 1; otherwise, | lcp(Si, Sj) | = 0.

2.2 Equivalence Classes

In this section, we will define equivalence relation El on sort arrays such as AT ,
Ao, and Ae, and explain the relationship between equivalence classes of El on a
sort array and subarrays of the sort array.

Let A be a sort array of size m and L be the corresponding lcp array. Equiv-
alence relation El (l ≥ 0) on A is:

El = {(i, j) | prefl(SA[i]) = prefl(SA[j])}.

That is, two suffixes SA[i] and SA[j] have a common prefix of length l if and only
if i and j are in the same equivalence class of El on A.

We describe the relationship between equivalence classes of El on A and
subarrays of A. Since the integers in A are sorted in the lexicographical order of
the suffixes they represent, we get the following fact from the definition of El.

190 D.K. Kim et al.

Fact 1 Subarray A[p, q], 1 ≤ p ≤ q ≤ m, is an equivalence class of El, 0 ≤ l ≤ n,
on A if and only if L[p− 1] < l, L[q] < l, and L[i] ≥ l for all p ≤ i < q.

We now describe how an equivalence class of El on A is partitioned into
equivalence classes of El+1. Let A[p, q] be an equivalence class of El. By Fact 1,
L[i] ≥ l for all p ≤ i < q. Let p ≤ i1 < i2 < · · · < ir < q denote all the indices
such that L[i1] = L[i2] = · · · = L[ir] = l. Since L[i] ≥ l + 1 for i �∈ {i1, i2, . . . , ir}
and p ≤ i < q, A[p, i1], A[i1+1, i2], . . . , A[ir+1, q] are equivalence classes of El+1.
We can find i1, i2, . . . , ir in O(r) time by Theorem 1 and we get the following
lemma.

Lemma 3. An equivalence class of El can be partitioned into equivalence
classes of El+1 in O(r) time, where r is the number of the partitioned equiv-
alence classes of El+1.

An equivalence class of El can be an equivalence class of Ek for k �= l.
Consider A[5, 7] in Fig. 1 where L[i] ≥ 5 for 5 ≤ i < 7, L[4] = 2, and L[7] = 1.
Then, A[5, 7] is an equivalence class of E3, E4, and E5. In general, we have the
following fact.

Fact 2 A subarray A[p, q] is an equivalence class of Ei for a ≤ i ≤ b if and
only if max{L[p− 1], L[q]} = a− 1 and b = |PA(p, q)|(= minp≤i<q L[i]).

The integers a and b are called the start stage and the end stage of the equivalence
class A[p, q].

3 Linear-Time Construction

We present a linear-time algorithm for constructing suffix arrays for integer
alphabets. Our construction algorithm follows the divide-and-conquer approach
used in [6,7,8,15,22], and it consists of the following three steps.
1. Construct the odd array SAo recursively. Preprocess Lo for range-minimum

queries.
2. Construct the even tree SAe from SAo. Preprocess Le for range-minimum

queries.
3. Merge SAo and SAe to get the final suffix array SAT .

The first two steps are essentially the same as those in [6,7,8] and our main
contribution is a new merging algorithm in step 3.

3.1 Constructing Odd Array

Construction of the odd array SAo is based on recursion and it takes linear time
besides recursion.
1. Encode the given string T into a string of a half size: We make pairs (T [2i−

1], T [2i]) for every 1 ≤ i ≤ n/2. Radix-sort all the pairs in linear time, and
map the pairs into integers in the range [1, n/2]. If we convert the pairs in
T into corresponding integers, we get a new string of a half size, which is
denoted by T ′.

Linear-Time Construction of Suffix Arrays 191

2. Recursively construct suffix array SAT ′ of T ′.
3. Compute SAo from SAT ′ : We get Ao by Ao[i] = 2AT ′ [i]− 1 for all i. Since

two symbols in T are encoded into one symbol in T ′, we get Lo from LT ′

as follows. If the first different symbols of T ′ in adjacent suffixes SAo[i] and
SAo[i+1] have the same first symbol of T , then Lo[i] = 2LT ′ [i]+1; otherwise,
Lo[i] = 2LT ′ [i].

3.2 Constructing Even Array

The even array SAe is constructed from SAo in linear time. We first compute
the sort array Ae and then compute the lcp array Le as follows.

1. Make the sort array Ae: An even suffix is one symbol followed by an odd
suffix. We make tuples for even suffixes: the first element of a tuple is T [2i]
and the second element is suffix S2i+1. First, the tuples are sorted by the
second elements (this result is given in Ao). Then we stably sort the tuples
by the first elements and we get Ae.

2. Compute the lcp array Le: Consider two even suffixes S2i and S2j . By
Lemma 2, if T [2i] and T [2j] match, |lcp(S2i, S2j)| = |lcp(S2i+1, S2j+1)|+1;
otherwise, lcp(S2i, S2j) = 0. We can get | lcp(S2i+1, S2j+1) | from the
odd array SAo in constant time as follows. Let x = index(2i + 1) and
y = index(2j + 1) in SAo. By Lemma 1, | lcp(S2i+1, S2j+1) | = | PAo(x, y) |,
which is computed by a MIN(Lo, x, y) query.

3.3 Merging Odd and Even Arrays

We will show how to obtain suffix array SAT =(AT , LT) from SAo and SAe in
O(n) time, where n is the length of T . The main task in merging is to compute
the sort array AT . The lcp array LT is computed as a by-product during the
merging. The target entry of an entry Ao[i] (resp. Ae[i]) is the entry of AT that
stores the integer in Ao[i] (resp. Ae[i]) after we merge Ao and Ae. To merge Ao

and Ae, we first compute the target entries of entries in Ao and Ae and then
store all the integers in Ao and Ae into AT . Hence, the problem of merging is
reduced to the problem of computing target entries of entries in Ao and Ae.

We first introduce some notions on equivalence classes of Ei on Ao and Ae.
For brevity, we define notions only on equivalence classes on Ao. (They are
defined on Ae similarly.) An equivalence class Ao[w, x] of Ei is i-coupled with
an equivalence class Ae[y, z] of Ei if and only if all the suffixes represented by
the integers in Ao[w, x] and Ae[y, z] have the common prefix of length i, i.e.,
prefi(PAo(w, x)) = prefi(PAe(y, z)). The integers in Ao[w, x] and Ae[y, z] (that
are i-coupled with each other) form an equivalence class of Ei on AT after we
merge Ao and Ae because each odd suffix represented by an integer in Ao[w, x]
and each even suffix represented by an integer in Ae[y, z] have the common prefix
prefi(PAo

(w, x)) = prefi(PAe
(y, z)) and the other odd or even suffixes do not

have prefi(PAo
(w, x)) as their prefixes.

192 D.K. Kim et al.

Lemma 4. The integers in Ao[w, x] and Ae[y, z] that are i-coupled with each
other form an equivalence class AT [w + y − 1, x + z].

An equivalence class Ao[w, x] of Ei is i-uncoupled if it is not i-coupled with
any equivalence class of Ei on Ae. If an equivalence class Ao[w, x] of Ei is i-
uncoupled, no suffix represented by an integer in Ae has prefi(PAo

(w, x)) as its
prefix and thus the integers in an i-uncoupled equivalence class Ao[w, x] form
an equivalence class of Ei on AT , which is AT [a + w, a + x] for some a, after we
merge Ao and Ae.

We now explain the notion of a coupled pair, which is central in our merging
algorithm. Consider an equivalence class Ao[w, x] whose start stage is lo and end
stage is ko and an equivalence class Ae[y, z] whose start stage is le and end stage
is ke such that l = max{lo, le} ≤ k = min{ko, ke} and Ao[w, x] and Ae[y, z] are
l-coupled with each other. We call C = 〈Ao[w, x], Ae[y, z]〉 a coupled pair. Since
Ao[w, x] and Ae[y, z] is l-coupled with each other, the integers in Ao[w, x] and
Ae[y, z] form an equivalence class AT [w + y − 1, x + z] after we merge Ao and
Ae. We define the start stage and the end stage of coupled pair C as the start
stage and the end stage of equivalence class AT [w + y − 1, x + z]. Since l is the
smallest integer such that Ao[w, x] is l-coupled with Ae[y, z], l is the start stage
of AT [w + y− 1, x + z] and thus l is the start stage of C. Now we are interested
in the end stage of C. Since one of Ao[w, x] and Ae[y, z] will be partitioned
into several classes of Ek+1, AT [w + y− 1, x + z] cannot be an equivalence class
of Ek+1. In the sense that the end stage of C cannot be larger than k, the
value k is called the limit stage of C. The actual end stage of C is the value of
|lcp(PAo(w, x),PAe(y, z))|, and it is in the range of [l, k]. In our algorithm, we
maintain coupled pairs in multiple queues Q[k] for 0 ≤ k < n. Each queue Q[k]
contains coupled pairs whose limit stage is k.

We now describe the outline of computing the target entries of entries in Ao

and Ae. We will compute target entries only for uncoupled equivalence classes
on Ao and Ae. Since all equivalence classes of Ei on Ao and Ae will eventually
be uncoupled as we increase i, we can find target entries of all entries in Ao and
Ae in this way.

Our merging algorithm consists of at most n stages, and it maintains the
following invariants.

Invariant: At the end of stage s ≥ 0, the equivalence classes that constitute
coupled pairs whose start stages are at most s and limit stages are at least s
are stored in Q[i] for s ≤ i ≤ n− 1. For every i-uncoupled equivalence class for
0 ≤ i ≤ s that does not constitute such a coupled pair, the target entries for the
equivalence class have been computed.

We will call an equivalence class for which target entries have been computed a
processed equivalence class.

We describe the outline of stages. At stage s, we do the following for each
coupled pair C = 〈Ao[w, x], Ae[y, z]〉 stored in Q[s − 1]. We first compute the
end stage of C by solving the following coupled-pair lcp problem. In the next
section, we show how to solve the coupled-pair lcp problem in O(1) time.

Linear-Time Construction of Suffix Arrays 193

Definition 2 (The coupled-pair lcp problem). Given a coupled pair C =
〈Ao[w, x], Ae[y, z]〉 whose limit stage is s− 1, compute the end stage of C. Fur-
thermore, if the end stage of C is less than s− 1, determine whether PAo(w, x)
≺ PAe

(y, z) or PAo
(w, x) 	 PAe

(y, z).

After solving the coupled-pair lcp problem for C, we have two cases depending
on whether or not the end stage of C is s− 1.

• If the end stage of C is s − 1, Ao[w, x] is (s − 1)-coupled with Ae[y, z].
We first partition Ao[w, x] and Ae[y, z] into equivalence classes of Es. Every
partitioned equivalence class will be either s-coupled or s-uncoupled. The
s-coupled equivalence classes constitute coupled pairs whose start stages are
at most s and limit stages are at least s, and thus we store each coupled pair
in Q[k] for s ≤ k ≤ n− 1, where k is the limit stage of the coupled pair. For
the s-uncoupled equivalence classes, we find the target entries for them.
• If the end stage of C is smaller than s− 1, Ao[w, x] and Ae[y, z] are (s− 1)-

uncoupled. We find the target entries for Ao[w, x] and Ae[y, z].

It is not difficult to see that the invariant is satisfied after stage s.
In our merging algorithm, we will use four arrays ptro, ptre, fino, and fine.

Since ptre and fine are similar to ptro and fino, we explain ptro and fino

only. At the end of stage s, the values stored in ptro and fino are as follows.

• fino stores target entries for Ao, i.e., fino[i] for 1 ≤ i ≤ no is defined if Ao[i]
is an entry of a processed equivalence class and it stores the index of the target
entry of Ao[i].

• ptro[i] for 1 ≤ i ≤ no is defined if Ao[i] is either the last entry of a coupled
equivalence class or an entry of a processed equivalence class.

− If Ao[i] is the last entry of an equivalence class Ao[a, b] (i.e., i = b) coupled
with Ae[c, d] (i.e., 〈Ao[a, b], Ae[c, d]〉 is stored in Q[k] for some s ≤ k ≤ n−1),
ptro[b] stores d.

− If Ao[i] is an entry of a processed equivalence class Ao[a, b]:
• If Ao[i] is not the last entry of Ao[a, b] (i.e., a ≤ i < b), ptro[i] stores b.
• Otherwise, ptro[b] stores β such that Ae[β] is the last entry of a parti-

tioned equivalence class Ao[α, β] and that β satisfies |lcp(SAo[b], SAe[β])|
≥ |lcp(SAo[b], SAe[δ])| for any other 1 ≤ δ ≤ ne. In addition, |lcp(SAo[b],
SAe[β])| is stored in LT [fino[b]] if fino[b] < fine[β] and LT [fine[β]]
otherwise.

We describe stages in detail. Initially, we are given a coupled pair 〈Ao[1, no],
Ae[1, ne]〉 whose start stage and limit stage is 0. In stage 0, we store 〈Ao[1, no],
Ae[1, ne]〉 into Q[0] and initialize ptro[no] = ne, ptre[ne] = no, LT [0] = LT [n] =
−1. In stage s, 1 ≤ s ≤ n, we do nothing if Q[s−1] is empty. Otherwise, for every
coupled pair C = 〈Ao[w, x], Ae[y, z]〉 stored in Q[s−1], we compute the end stage
of C by solving the coupled-pair lcp problem. We have two cases depending on
whether or not the end stage of C is s− 1.

194 D.K. Kim et al.

Case 1: If the end stage of C is s−1, Ao[w, x] is (s−1)-coupled with Ae[y, z].
We first partition Ao[w, x] and Ae[y, z] into equivalence classes of Es. Let Co

and Ce denote the set of equivalence classes into which Ao[w, x] and Ae[y, z]
are partitioned respectively. We denote equivalence classes in Co by Ao[wi, xi],
1 ≤ i ≤ r1, such that PAo(wj , xj) ≺ PAo(wk, xk) if j < k and equivalence classes
in Ce by Ae[yi, zi], 1 ≤ i ≤ r2, such that PAe

(yj , zj) ≺ PAe
(yk, zk) if j < k.

Partitioning Ao[w, x] and Ae[y, z] into equivalence classes of Es takes O(r1 + r2)
time by Lemma 3.

Each equivalence class in Co (resp. Ce) is either s-coupled or s-uncoupled. We
find every coupled pair 〈Ao[wi, xi], Ae[yj , zj]〉, store it into Q[min{|PAo

(wi, xi)|,
|PAe(yj , zj)|}], set ptro[xi] = zj , ptre[zj] = xi, and compute LT [xi + zj] appro-
priately. For each s-uncoupled equivalence class Ao[wi, xi], we find target entries
for Ao[wi, xi], store them in fino[α] for wi ≤ α ≤ xi, and compute ptro[k]
for wi ≤ k ≤ xi and LT [fino[xi]]. We perform a similar operation for each
s-uncoupled equivalence class Ae[yj , zj]. The following procedure shows the op-
erations in detail. (We assume ar1+1 = br2+1 = $ where $ 	 a for any a ∈ Σ,
wr1+1 = xr1 + 1, xr1+1 = xr1 , yr2+1 = zr2 + 1, and zr2+1 = zr2 .)

Procedure MERGE(Co, Ce)
1: i← 1 and j ← 1
2: while i ≤ r1 or j ≤ r2 do
3: ai ← the sth symbol of PAo(wi, xi)
4: bj ← the sth symbol of PAe(yj , zj)
5: if ai = bj then // Ao[wi, xi] and Ae[yj , zj] are s-coupled.
6: k ← min{ | PAo

(wi, xi) |, | PAe
(yj , zj) | }

7: store 〈Ao[wi, xi], Ae[yj , zj]〉 into Q[k]
8: if i + j < r1 + r2 then LT [xi + zj]← s− 1 fi
9: if i < r1 then ptro[xi]← zj fi
10: if j < r2 then ptre[zj]← xi fi
11: i← i + 1 and j ← j + 1
12: else if ai ≺ bj then // Ao[wi, xi] is s-uncoupled.
13: if i + j < r1 + r2 then LT [xi + yj − 1]← s− 1 fi
14: fino[k]← k + yj − 1 for wi ≤ k ≤ xi

15: ptro[k]← xj for wi ≤ k < xi

16: if i < r1 then ptro[xi]← zj

17: i← i + 1
18: else // Ae[yj , zj] is s-uncoupled.
19: if i + j < r1 + r2 then LT [wi + zj − 1]← s− 1 fi
20: fine[k]← k + wi − 1 for yj ≤ k ≤ zj

21: ptre[k]← zj for yj ≤ k < zj

22: if j < r2 then ptre[zj]← xi fi
23: j ← j + 1
24: fi
25: od
end

Linear-Time Construction of Suffix Arrays 195

For each equivalence class Ao[wi, xi], we show that fino[α] and ptro[α] for
wi ≤ α ≤ xi store correct values. (Similarly for Ae[yj , zj].) We only show
that ptro[xi] stores a correct value when Ao[wi, xi] is s-uncoupled (so pro-
cessed) because setting other values is trivial. From the description of procedure
MERGE(Co, Ce), ptro[xi] is zj for some 1 ≤ j ≤ r2.
Claim. zj satisfies |lcp(SAo[xi], SAe[zj])| ≥ |lcp(SAo[xi], SAe[α])| for 1 ≤ α ≤ ne

and |lcp(SAo[xi], SAe[zj])| is stored in LT [fino[xi]] if fino[xi] < fine[zj] and in
LT [fine[zj]] otherwise.

Proof of Claim: Since Ao[w, x] and Ao[y, z] is (s− 1)-coupled and Ao[wi, xi]
is s-uncoupled, |lcp(SAo[xi], SAe[zj])| = s − 1. Since Ao[wi, xi] is s-uncoupled,
|lcp(SAo[xi], SAe[α])| ≤ s − 1 for 1 ≤ α ≤ ne. Hence, zj satisfies
|lcp(SAo[xi], SAe[zj])| ≥ |lcp(SAo[xi], SAe[α])| for 1 ≤ α ≤ ne. If fino[xi] <
fine[zj], fino[xi] < x + z and thus LT [fino[xi]] is set to s − 1, which is
|lcp(SAo[xi], SAe[zj])|. Otherwise, fine[zj] < x + z and thus LT [fine[zj]] is set
to s− 1.

Case 2: If the end stage of C is smaller than s− 1, Ao[w, x] and Ae[y, z] are
(s−1)-uncoupled. Assume without loss of generality that PAo

(w, x) ≺ PAe(y, z).
We first find the target entries for Ao[w, x] and Ae[y, z]. We set fino[i] = i+y−1
for w ≤ i ≤ x and fine[i] = i + x for y ≤ i ≤ z. We also set ptro[i] = x for
w ≤ i < x, ptre[i] = z for y ≤ i < z, and LT [x + y − 1] = |lcp(PAo

(w, x),
PAe

(y, z))|. We already set ptro[x] as z and ptre[z] as x and set LT [x + z]
appropriately when we were storing C into Q[s − 1] and the values stored in
ptro[x], ptro[z], and LT [x + z] are still effective.

Consider the time complexity of the merging algorithm. Procedure MERGE
(except fin and ptr) takes time proportional to the total number of partitioned
equivalence classes in Ao and Ae. Since there are at most no partitioned equiva-
lence classes in Ao and at most ne classes in Ae, MERGE takes O(n) time. Since
each entry of fin and ptr is set only once throughout stages, it takes O(n) time
overall. The rest of the merging algorithm takes time proportional to the total
number of coupled pairs inserted into Q[k]. Since a couple pair corresponds to
an equivalence class on AT , the total number of coupled pairs is at most n− 1.
Therefore, the time complexity of merging is O(n).

3.4 The Coupled-Pair lcp Problem

Recall the coupled-pair lcp problem: Given a coupled pair C = 〈Ao[w, x],
Ae[y, z]〉 whose limit stage is s − 1, compute the end stage of C. And if the
end stage of C is less than s − 1, determine whether PAo

(w, x) ≺ PAe
(y, z) or

PAo(w, x) 	 PAe
(y, z). The problem is easy to solve when s is 1 or 2. When

s = 1, |PAo(w, x)| and |PAe(y, z)| are 0 and thus the end stage of C is 0. When
s = 2, the end stage of C is 1. From now on, we describe how to compute the
end stage of C when s ≥ 3. Assume without loss of generality that the end stage
of Ao[w, x] is s− 1.

We first show that when s ≥ 3, the problem of computing the end stage of
C (i.e., |lcp(PAo(w, x), PAe(y, z))|) is reduced to the problem of computing the
longest common prefix of two other suffixes.

196 D.K. Kim et al.

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����

����
����
����
����
����

o

xw

c

b
a

cc

A

c

b

ptre(b)

b

ba

a

A

c

b

c

a

b

ccc

a

a

e

a a a
b b b

c c c

b b b b bb b bb b

aaaa

zy w’a bz’ x’

ccc c c

b b

c c

c

end
The odd array

d

s−2s−1

start

end
= limit

The even array

start

γ

Fig. 2. Finding γ at stage s.

|lcp(PAo
(w, x), PAe

(y, z))| = |lcps−1(PAo
(w, x), PAe

(y, z))|
= |lcps−1(SAo[w], SAe[z])|
= |lcps−2(SAo[w]+1, SAe[z]+1)|+ 1

The first equality holds because the end stage of Ao[w, x] is s − 1.
The second equality holds because prefs−1(PAo(w, x)) = prefs−1(SAo[w]) and
prefs−1(PAe

(y, z)) = prefs−1(SAe[z]). The third equality holds because the start
stage of the coupled pair is at least 1 which implies that the first characters of
SAo[w] and SAe[z] are the same. From now on, let w′ = indexe(Ao[w] + 1) and
z′ = indexo(Ae[z] + 1) for brevity.

We show how to compute t = |lcps−2(SAe[w′], SAo[z′])| in O(1) time. We first
define an index γ of Ao as follows.

Definition 3. Let γ be an index of array Ao such that |lcps−2(SAe[w′], SAo[γ])|
≥ |lcps−2(SAe[w′], SAo[δ])| for any other index δ of Ao.

By definition of γ, t is the minimum of t1 = |lcps−2(SAe[w′], SAo[γ])| and t2 =
|lcps−2(SAo[γ], SAo[z′])|. To compute t, we first find γ and compute t1. Let
Ae[a, b] be the partitioned equivalence class including Ae[w′] after stage s − 1.
We will show γ = ptre[b]. There are two cases whether or not Ae[a, b] constitutes
a coupled pair stored in Q[k] just after stage s− 1.

If Ae[a, b] constitutes a coupled pair stored in Q[k] for s − 1 ≤ k < n, let
Ao[c, d] be the equivalence class coupled with Ae[a, b]. See Fig. 2.

Lemma 5. The start stages of Ae[a, b] and 〈Ao[c, d], Ae[a, b]〉 are both s− 1.

We show that γ is ptre[b] = d and t1 is s−2. Since the start stage of C ′ is s−1
and a ≤ w′ ≤ b, |lcp(SAe[w′], SAo[d])| ≥ s−1 and thus |lcps−2(SAe[w′], SAo[d])| =
s − 2. Since |lcps−2(SAe[w′], SAo[d])| is at most s − 2, γ in definition 3 is d and
t1 = |lcps−2(SAe[w′], SAo[γ])| = s−2. We have only to show how to find γ (= d)

Linear-Time Construction of Suffix Arrays 197

in O(1) time. Since Ae[w′] and Ae[x′] are in the same equivalence class of Es−2
and Ae[x′] is not in Ae[a, b] whose start stage is s − 1, we can compute b from
w′ and x′ in O(1) time by a MIN(Le, w

′, x′) query. Once b is computed, we get
d from ptre[b].

If Ae[a, b] is processed after stage s−1, Ae[a, b] is an i-uncoupled equivalence
class for some 0 ≤ i ≤ s − 1 by the invariant. Since Ae[a, b] is i-uncoupled,
prefi(SAe[b]) = prefi(SAe[j]) and prefi(SAe[j]) �= prefi(SAo[k]) for a ≤ j ≤ b
and 1 ≤ k ≤ no and thus |lcp(SAe[w′], SAo[k])| = |lcp(SAe[b], SAo[k])| for all
1 ≤ k ≤ no. Hence, γ in definition 3 is ptre[b] by definition of ptre. We can
compute γ in O(1) time because γ = ptre[b] and b = ptre[w

′] if w′ �= b by
definition of ptre. We can also compute |lcps−2(SAe[b], SAo[γ])| in O(1) time by
definition of ptre.

Finally, t2 = |lcps−2(SAo[γ], SAo[z′])| is the minimum of s−2 and |lcp(SAo[γ]],
SAo[z′])|, where |lcp(SAo[γ], SAo[z′])| can be obtained in O(1) time by the query
MIN(Lo, γ, z′ − 1) or MIN(Lo, z′, γ − 1).

References

1. M. Bender and M. Farach-Colton, The LCA Problem Revisited, In Proceedings of
LATIN 2000, LNCS 1776, 88–94, 2000.

2. O. Berkman and U. Vishkin, Recursive star-tree parallel data structure, SIAM J.
Comput. 22 (1993), 221–242.

3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen and J. Seiferas,
The smallest automaton recognizing the subwords of a text, Theoret. Comput. Sci.
40 (1985), 31–55.

4. S. Burkhardt and J. Kärkkäinen, Fast lightweight suffix array construction and
checking, Accepted to Symp. Combinatorial Pattern Matching (2003).

5. M. Crochemore, An optimal algorithm for computing the repetitions in a word,
Inform. Processing Letters 12 (1981), 244–250.

6. M. Farach, Optimal suffix tree construction with large alphabets, IEEE Symp.
Found. Computer Science (1997), 137–143.

7. M. Farach-Colton, P. Ferragina and S. Muthukrishnan, On the sorting-complexity
of suffix tree construction, J. Assoc. Comput. Mach. 47 (2000), 987-1011.

8. M. Farach and S. Muthukrishnan, Optimal logarithmic time randomized suffix tree
construction, Int. Colloq. Automata Languages and Programming (1996), 550-561.

9. P. Ferragina and G. Manzini, Opportunistic data structures with applications,
IEEE Symp. Found. Computer Science (2001), 390–398.

10. H.N. Gabow, J.L. Bentley, and R.E. Tarjan, Scaling and Related Techniques for
Geometry Problems, ACM Symp. Theory of Computing (1984), 135–143.

11. G. Gonnet, R. Baeza-Yates, and T. Snider, New indices for text: Pat trees and
pat arrays. In W. B. Frakes and R. A. Baeza-Yates, editors, Information Retrieval:
Data Structures & Algorithms, Prentice Hall (1992), 66–82.

12. D. Gusfield, An “Increment-by-one” approach to suffix arrays and trees, manuscript
1990.

13. R. Grossi and J.S. Vitter, Compressed suffix arrays and suffix trees with appli-
cations to text indexing and string matching, ACM Symp. Theory of Computing
(2000), 397–406.

198 D.K. Kim et al.

14. D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors,
SIAM J. Comput. 13 (1984), 338–355.

15. R. Hariharan, Optimal parallel suffix tree construction, J. Comput. Syst. Sci. 55
(1997), 44–69.

16. J. Kärkkäinen and P. Sanders, Simpler linear work suffix array construction, Ac-
cepted to Int. Colloq. Automata Languages and Programming (2003).

17. P. Ko and S. Aluru, Space-efficient linear time construction of suffix arrays, Ac-
cepted to Symp. Combinatorial Pattern Matching (2003).

18. U. Manber and G. Myers, Suffix arrays: A new method for on-line string searches,
SIAM J. Comput. 22 (1993), 935–938.

19. E.M. McCreight, A space-economical suffix tree construction algorithm, J. Assoc.
Comput. Mach. 23 (1976), 262–272.

20. J. I. Munro, V. Raman and S. Srinivasa Rao Space Efficient Suffix Trees, FST &
TCS 18, in Lecture Notes in Computer Science, (Springer-Verlag), Dec. 1998.

21. K. Sadakane, Succinct representation of lcp information and improvement in the
compressed suffix arrays, ACM-SIAM Symp. on Discrete Algorithms (2002), 225–
232.

22. S.C. Sahinalp and U. Vishkin, Symmetry breaking for suffix tree construction,
IEEE Symp. Found. Computer Science (1994), 300–309.

23. B. Schieber and U. Vishkin, On finding lowest common ancestors: simplification
and parallelization, SIAM J. Comput. 17, (1988), 1253–1262.

24. E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995), 249–260.
25. J. Vuillemin, A unifying look at data structures, Comm. ACM Vol. 24, (1980),

229–239.
26. P. Weiner, Linear pattern matching algorithms, Proc. 14th IEEE Symp. Switching

and Automata Theory (1973), 1–11.

Appendix: Range Minima Problem

We define the range-minima problem as follows:

Given an array A = (a1, a2, . . . , an) of integers 0 ≤ ai ≤ n− 1, preprocess A
so that any query MIN(A, i, j), 1 ≤ i < j ≤ n, requesting the index of the
leftmost minimum element in (ai, . . . , aj), can be answered in constant time.

We first describe two preprocessing algorithms for the range-minima problem:
algorithm E takes exponential time and algorithm L takes O(n log n) time. Then,
we present a linear-time preprocessing algorithm using both algorithms E and
L. Finally, we describe how to answer a range-minimum query in constant time.
Our algorithm is a modification of Berkman and Vishkin’s solution for the range
minima problem [2].

Algorithm E: Since the elements of A are integers in the range [0, n− 1], the
number of possible input arrays of size n is nn. If we regard an array of size n as
a string S ∈ Σn over an integer alphabet Σ = {0, 1, . . . , n− 1}, it is mapped to
an integer k (1 ≤ k ≤ nn) such that S is lexicographically the kth string among
the nn possible strings. We make a table Tn(k, i, j) that stores the answer to
query MIN(A, i, j), where A is mapped to k. The size of table Tn is O(nn+2)
and it takes O(nn+2) time to make Tn.

Linear-Time Construction of Suffix Arrays 199

Algorithm L: We now describe an O(n log n)-time algorithm. We define the
prefix and suffix minima as follows. The prefix minima of A are (c1, c2, . . . , cn)
such that ci = min{a1, . . . , ai} for 1 ≤ i ≤ n. Simiarly, the suffix minima of A are
(d1, d2, . . . , dn) such that dj = min{aj , . . . , an} for 1 ≤ j ≤ n. The prefix minima
and suffix minima of A can be computed in linear time. The preprocessing of
algorithm L constructs a complete binary tree T whose leaves are the elements of
the input array A. Let Au be the list of the leaves of the subtree rooted at node
u. Each internal node u of T maintains the prefix minima and suffix minima of
Au. It takes O(n log n) time to construct T . Since T is a complete binary tree,
it can be easily implemented by arrays.

Suppose that we are now given a range-minima query MIN(A, i, j). Find the
lowest common ancestor u of two leaves ai and aj in T . Let v and w be the left
and right children of u, respectively. Then, [i, j] is the union of a suffix of Av

and a prefix of Aw. The answer to the query is the minimum of the following
two elements: the minimum of the suffix of Av and the minimum of the prefix
of Aw. These operations take constant time using T .

We now describe a linear-time preprocessing algorithm for the range-minima
problem.

• Let m = log log n. Partition the input array A into n/m blocks Ai of size
m. We map each block Ai into an array Bi whose elements are the rankings
in the sorted list of Ai (i.e., the elements of Bi are integers in the range
[0, m− 1]). We can sort n/m blocks Ai at the same time using n buckets in
O(n) time. Apply algorithm E to all possible arrays of size m. Since mm+2

= O(n), we can make table Tm in O(n) time using O(n) space.
• Partition A into n/ log n blocks Ai of size log n and find the minimum in

each block. Apply algorithm L to an array of these n/ log n minima. Also,
we do the following for each block Ai. Partition Ai into subblocks of size
log log n, and find the minimum in each subblock. Apply algorithm L to
these log n/ log log n minima. The total time and space are O(n).

When a query MIN(A, i, j) is given, the range [i, j] can be divided into at
most five subranges, and the minimum in each subrange can be found in constant
time by the preprocessing above. The answer to the query is the minimum of
these five minima [2].

	Introduction
	Preliminaries
	Definitions and Notations
	Equivalence Classes

	Linear-Time Construction
	Constructing Odd Array
	Constructing Even Array
	Merging Odd and Even Arrays
	The Coupled-Pair lcp Problem

